Passa ai contenuti principali

Le Alpi si sono formate in seguito all’affioramento causato da uno "scarico di zavorra" anziché da una compressione


Le rocce alpine sono diventate una catena montuosa perché si sono staccate dal pesante strato sottostante la placca europea interessata dal fenomeno della subduzione. È questa la teoria proposta da E. Kissling dell’Istituto di Geofisica dell’ETH di Zurigo e da F. Schlunegger dell’Istituto di geologia dell’Università di Berna nel loro nuovo modello di formazione delle Alpi pubblicato di recente. Le ipotesi avanzate finora partivano dal presupposto che le Alpi si fossero formate in seguito alla compressione tra la placca adriatica a sud e la placca europea a nord. Tuttavia, numerosi dati geofisici e geologici più recenti contraddicono il vecchio modello "bulldozer".

La parte più rigida del pianeta Terra, denominata litosfera, è frammentata in una serie di placche che galleggiano sul sottostante mantello viscoso come delle zattere. Queste placche sono formate da due strati, la crosta superiore e la cosiddetta mesosfera inferiore. La costa garantisce la spinta ascensionale, impedendo che la pesante mesosfera affondi nel mantello. Le parti oceaniche delle placche della litosfera hanno una crosta molto più sottile delle parti continentali e quindi anche una minore spinta ascensionale: nelle cosiddette zone di subduzione, la litosfera oceanica può interamente affondare nel mantello e causare il movimento della parte continentale della placca lungo la superficie terrestre.

Gli inizi della formazione delle Alpi sono stati caratterizzati da una simile subduzione, durante la quale la vecchia parte oceanica dell’Europa è sprofondata sotto al continente adriatico-africano più a sud. Dopo la subduzione dell’intero oceano, le due placche litosferiche continentali si sono scontrate come in una collisione tra due zattere. Secondo il vecchio modello di formazione delle Alpi centrali svizzere, tale collisione tra le due placche continentali ha causato una compressione e un accatastamento del materiale roccioso che si trovava in mezzo.

I recenti dati geofisici sulla struttura profonda delle Alpi e le ultime conoscenze geologiche sulla formazione dell’Altipiano fanno tuttavia ritenere che la compressione tra le due placche, se mai si è verificata, abbia contribuito solo in minima parte alla formazione della catena montuosa. È più probabile che le rocce alpine siano diventate una catena montuosa perché la crosta continentale si è staccata dal pesante strato inferiore della placca europea interessata dal fenomeno della subduzione. La crosta, spessa fino a 60 km, ha quindi subito una forte spinta ascensionale supplementare e da allora sostiene senza problemi il peso della roccia come un iceberg che galleggia sull’acqua. La maggiore spinta ascensionale della crosta continentale compensa costantemente l’altezza delle montagne, che altrimenti diminuirebbe a causa dei processi di erosione. I fiumi e i ghiacciai modellano le montagne per erosione e sedimentazione nel bacino di avampaese, un tempo nell’Altopiano svizzero e oggi nella Pianura Padana.

Nel nuovo modello sulla formazione delle Alpi, in primo piano ci sono quindi le forze gravitative e quindi ad azione verticale della placca galleggiante. Il modello dei due autori si differenzia quindi dal vecchio modello "bulldozer", in cui sono le forze orizzontali a giocare un ruolo centrale.

Commenti

Post popolari in questo blog

La "terra mobile" di Wegener e la deriva dei continenti

Fig. 1 - Ricostruzione del Pangea e della sua evoluzione paleogeografica. L'idea di una " Terra mobile ", la cui superficie cambia aspetto nel tempo per il continuo reciproco spostarsi di settori della crosta, è nata all'inizio del secolo scorso ed ha avuto il suo principale teorico in Alfred Wegner , ben noto per avere proposto la teoria della deriva dei continenti. Wegner considerava le aree continentali come zattere di sial galleggianti sul sima, indicando con sial (da silicio a alluminio) la crosta a composizione media granitica, meno densa, e con sima (da silicio a magnesio) il materiale sottostante, più denso, di composizione basaltica, che affiorava sul fondo degli oceani e costituiva, secondo l'autore, un involucro continuo (Fig. 1). Nella teoria, i grossi frammenti di crosta sialica, immersi nel sima molto viscoso " come iceberg nell'acqua " sarebbero andati pian piano alla deriva verso ovest, per restare in ritardo rispetto la ro...

La ricerca sulla Faglia Canossa - San Romano e il Terrazzo di Roteglia (2019-2024).

Lo studio sulla Faglia Canossa - San Romano e del Terrazzo di Roteglia ebbe inizio in Autunno del 2018, durante un viaggio in auto. Passando lungo la strada che da Roteglia arriva a Castellarano, giunti alle pendici del M. Pendice, sul lato destro del fiume si osserva il terrazzo del Pigneto con la "Rupe del Pescale". In questo panorama, fu il confronto aperto con un "amico" a guidarmi verso la ricerca e a come la faglia poteva avere giocato un ruolo importate sulla geologia e la geomorfologia dell'area subito a monte, appunto la zona di Roteglia e il suo terrazzo fluviale.   L'idea di partenza era che la Canossa - San Romano potesse essere la faglia che, con il suo movimento distensivo in epoca geologicamente più recente, aveva creato una "barriera" al corso del Fiume Secchia, determinando una sedimentazione differente nell'area più a monte, dove è presente un esteso terrazzo di depositi alluvionali, costituito perlopiù da ghiaia e fango, dove...

Quaternary geology and geological map of the Roteglia Basin within the River Secchia valley (Italy) with evidence for the Canossa-San Romano Fault System and inversion tectonic activity

  [EN] This report and accompanying geological map are the culmination of a several year study on the influence of the Canossa-San Romano normal fault system on Quaternary deposition and geomorphology within the Roteglia Basin (northern Italy). Quaternary sedimentary deposits that flank the River Secchia in the study area have led to new interpretations regarding the timing of tectonic activity along the north-eastern margin of the Apennines and have raised questions regarding regional stratigraphic correlation of Quaternary stratigraphic units. A small depositional basin, named during this study as the Roteglia Basin, has been formed where the Canossa-San Romano Fault System crosses the R. Secchia. This fault system is comprised of the Canossa-San Romano primary fault and two subordinate synthetic faults, named the Border and Argontello Faults. Adjacent to the R. Secchia is a set of three strath terraces, dating from 220 to 22 ka, that were cut by the river as the mountain fr...