Wednesday, 5 April 2017

Il modello di "tettonica di intaccatura (indentation)"

Esperimento del modello di "tettonica di intaccatura (indentation)" su plastilina (Tapponnier et al., 1982, 1986 and Peltzer & Tapponnier 1988).

Extrusion experiment with plasticine, IPGP tectonics lab. from Lacassin Robin on Vimeo.


Il modello descrive il processo di indentatura da parte della placca Indiana (rappresentata dal dente metallico rigido) che si comporta come placca rigida che penetra all'interno della placca Asiatica a comportamento più "molle" (meno rigido). Sulla placca Asiatica si formano diverse faglie che accompagnano l'estrusione (tettonica di estrusione o di fuga) verso Est dell'Indocina.
Il modello di laboratorio, confrontato con la tettonica regionale (ad ampia scala) desunta da dati rilevati in campagna, mostra diverse correlazioni.


Riferimenti bibliografici
Kearey P., Vine F.J., 1994 - Tettonica Globale. Zanichelli Ed.
Kearey P., Klepeis K.A., Vine F.J., 2010 - Global Tectonics. Wilei-Blackwell Ed.

Saturday, 25 March 2017

Sciame Appennino Tosco-Emiliano del Marzo 2017


In data 25/03/2017 si è riattivato lo sciame dell'Appennino Tosco-Emiliano [1], localizzato nei pressi di Castiglione dei Pepoli, nella stessa area del 2015 [2]. 


La distribuzione degli ipocentri evidenzia una superficie NE-immergente che potrebbe rappresentare un detachment, una superficie di scollamento, probabilmente di importanza regionale. Tale superficie sembra, al momento, "guidare" la sismicità dell'area, con eventi di bassa magnitudo. Sempre la distribuzione degli ipocentri mette in evidenza una faglia SW-immergente (f) coniugata alla precedente. Tale geometria strutturale può essere rappresentata da uno stile tettonico simile alla Val Tiberina-Gubbio [3]


La sismicità storica, ricavata dal catalogo CPTI11 (INGV), mostra che l'area storicamente è stata soggetta ad eventi con M stimata da 5.0 a 5.9. 

Riferimenti
[1] Elenco dei dati dello sciame sismico da INGV.
[2] Sciame sismico dell'Appennino Tosco-Emiliano.
[3] Faglia Tiberina e sistema estensionale Umbro-Marchigiano.

Monday, 27 February 2017

How to Identify Foreshocks in Seismic Sequences to Predict Strong Earthquakes

Abstract: The time analysis of seismic events preceding several strong earthquakes occurred in recent decades throughout the world, has highlighted some foreshocks’characteristics, which are helpful for their discrimination compared to other types of events. These features can be identified within the seismic sequence and used as strong events’ precursors. Through the energy release pattern analysis, which precedes any strong earthquakes, in this study we describe some graphical procedures suitable for distinguishing a foreshock from any other type of earthquake. We have broadly divided foreshocks into two classes, depending on their position within the energy release pattern, by describing some relationships between the foreshock’s magnitude and the following earthquake’s. The results obtained show how the energy release pattern of some major earthquakes has distinctive features and repeatability which it is possible to obtain information from in order to perform sufficiently reliable short-term forecasts.

Riga G. & Balocchi P.


Riga, G. and Balocchi, P. (2017) How to Identify Foreshocks in Seismic Sequences to Predict Strong Earthquakes. Open Journal of Earthquake Research, 6, 55-71. https://doi.org/10.4236/ojer.2017.61003

Saturday, 4 February 2017

Il piccolo sciame della costa Laziale meridionale (Latina)

Fig. 1 - localizzazione dello sciame sismico
della costa Laziale meridionale
(Tirreno Meridionale, TM) e l'attuale
sequenza sismica in Italia centrale (IC).
Nella giornata del 03 febbraio 2017 si è sviluppato un piccolo sciame sismico (fig. 1) a largo della costa Laziale meridionale (Latina). dove l'evento di maggiore magnitudo è stato quello di Ml=3.7 del 03 febbraio 2017 ore italiane 22:33:02 (UTC 21:33:02) [1]. 
Successivamente alle nel giorno 04 febbraio 2017 alle ore italiane 00:08:05, si è verificato un'altro evento di Ml=3.5 [2].
Il meccanismo focale di questo secondo evento (fig. 2), evidenzia la direzione dei piani nodali e degli assi principali dello stress. La faglia responsabile del terremoto di M=3.5 è ascrivibile ad una trascorrente la cinematica sisnistrorsa con componente normale, legato alla struttura di importanza regionale descritta come 41PL (essendo parallela al 41° parallelo) che rappresenta un importante limite che separa il bacino tirrenico settentrionale da quello meridionale [3] [4], due aree che con tassi di deformazione differenti, una maggiore estensione nel Tirreno meridioanle e minore in quello settentrionale [4]. 
Fig. 2 - Meccanismo focale dell'evento Ml=3.5
Anche se il significato tettonico di tale limite non sembra ben definito, da diversi autori viene interpretato in due modi [3]: i) come avvallamento per post-rifting legato a sollecitazione da raffreddamento e stress intraplacca; ii) come faglia di trasferimento caratterizato da un movimento laterale sinistro (fig. 3). 
In base ai dati sismologici è plausibile ipotizzare che lo sciame sismico della costa Laziale meridionale sia dovuto alla riattivazione di segmenti di faglia appartenenti alla 41PL o strutture secondarie a essa associate. Come evidenzia il meccanismo focale, si evidenzia una componete trascorrente sisnistrorsa associato al piano nodale a direzione NE-SE e una componete normale secondo un asse di massima tensione N-S. Pertanto si ritiene che lo sciame sismico Laziale meridionale possa essere dovuto ad una tettonica trastensiva sisnistrorsa, legata all'attivazione di strutture riconducibili a zona 41PL [3] [4]. 

Fig. 3 - Mappa schematica del Tirreno e Appennino settentrionale [3]

La struttura 41PL è strettamente correlata alla complessa evoluzione paleogeografica (e tettonica) del mar Tirreno (fig. 4) [3] [4] [5]. Si nota come la migrazione progressiva dell'arco Calabro-Peloritano in direzione SE, sia legata all'attività di due strutture principali: quella a nord, denominata 41PL a cinematica trascorrente sinistrorsa e a sud, la faglia nord-Siciliana trascorrente destrorsa [5]. Da notare come la 41PL fiancheggia anche la costa della Campania fino alla Calabria nord in cui prende il nome di linea di Sangineto (SL in fig. 3) [3] [4] [5].

Fig. 4 - Mappa che mostra l'evoluzione paleogeografica dell'arco Calabro-Peloricato (CP), legato all'apertura del Tirreno e alla subduzione del mare Ionio al di sotto della Calabria (figura tratta da: [4].

Riferimenti Bibliografici
[3] Bruno et al., 2000. Seismic study of the ‘41st Parallel’ Fault System offshore the Campanian–Latial continental margin, Italy. Tectonophysics, 324, 37–55.
[4] Conti et al., 2016. Transfer zones in an oblique back-arc basin setting: Insights from the Latium -Campania segmented margin (Tyrrhenian Sea). Tectonics, 36, doi:10.1002/2016TC004198.
[5] Rosenbaum & Lister, 2004. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics, Vol. 23, TC1013, doi:10.1029/2003TC001518.

Monday, 30 January 2017

Lo sciame di Arezzo 2017 e la faglia Altotiberina

Fig. 1 - sciame del 29/01/2017
In data 29/01/2017 si è verificato un piccolo sciame in corrispondenza del bacino artificiale di Montedoglio (Sansepolcro), con eventi di bassa magnitudo M max = 2.7 (fig.1).


Nel 2001 si è sviluppata una sequenza sismica diffusa di magnitudo moderata. L'evento principale di Ml=4.3 si è verificato il 26/11/2001 con un meccanismo focale distensivo (asse principale di tensione NE-SW circa), seguito da altri eventi di minore magnitudo (fig. 2). La sequenza sismica è stata attribuita al una faglia a basso angolo NE-immergente e descritta in letteratura come faglia Altotiberina (ATF) [1], [2], [3]. 


Fig. 2 - Localizzazione della sequanza sismica del 1997 (pallini neri) e quella del 2001 (pallini rossi) e meccanismo focale dell'evento principale di Ml=4.3 [3]. La sezione lungo la traccia SW-NE, suggerisce che la sismicità del 2001 sia dovuta ad una faglia normale NE-immergente rappresentata da ATF, mentre la sismicità del 1997 sia dovuta ad una faglia antitetica alla precedente [1], [3].  


Gli ipocentri dello sciame sismico del 29/01/2017 mostrano una distribuzione lungo una superficie NNE-immergente (fig. 3), interpretabile come scollamento basale. Tale struttura è confrontabile con la ATF [4], [5], [6], [7], che rappresenta la stessa faglia della sequanza sismica del 2001.

Fig. 3 - sezione SSW-NNE dello sciame sismico del 29/01/2017.

E' plausibile ritenere che la ATF sia in grado di generare terremoti lungo i segmenti più superficiali [2] come evidenziato dalla sequenza del 2001 e l'attuale sciame. 
Alcuni studi suggeriscono la presenza di segmenti superficiali della ATF nella zona di Città di Castello, il cui potenziale sismogenico è di Mw=6.5 [8], mentre semplici modelli suggeriscono un Mw 6.7 [9], [10]. 

Riferimenti bibliografici
[1] Braun et al., 2002 - : Evidenze di attività sismica sulla faglia Altotiberina, in XXI  Convegno Nazionale GNGTS, 19-21 Novembre 2002, Roma, Italy, 1, 121. 
[2] Ciaccio et al., 2006 - Earthquake fault-plane solutions and patterns of seismicity within the Umbria Region, Italy. Annals of Geophysics, Vol. 49, N. 4/5.
[3] Heinicke et al., 2006 - Gas flow anomalies in seismogenic zones in the Upper Tiber Valley, Central Italy. Geophys. J. Int., 167, 794–806
[6] Balocchi, 2015 - La faglia Tiberina e il sistema estensionale Umbro-Marchigiano. Scienze-Naturali.it
[7] Mirabella et al., 2011 - Tectonic evolution of a low‐angle extensional fault system from restored cross‐sections in the Northern Apennines (Italy). Tectonics, 30, TC6002, doi: 10.1029/2011TC002890.
[8] Brozzetti et al., 2009 - Present activity and seismogenetic potential of a low-angle normal fault system (Città di Castello, Italy): Constraints from surface geology, seismic reflection data and seismicity. Tectonophysics, 463, pp. 31-46. 
[9] Anderlini et al., 2016 - Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy), Geophys. Res. Lett., 43, pp. 4321–4329.
[10] Vadacca et al., 2016 - On the mechanical behaviour of a low-angle normal fault: the Alto Tiberina fault (Northern Apennines, Italy) system case study. Solid Earth, 7, pp. 1537–1549.