domenica 6 novembre 2016

Sequenza sismica dell'Italia centrale

Figura 1

Il 30 ottobre 2016 alle ore 07:43 si è verificato un terremoto di Mw 6.5, con epicentro nei pressi di Norcia e profondità di circa 9.0 km. La sequenza sismica continua con un numero complessivo di scosse pari a circa 23.900 dal 24 agosto. In fig. 1 si può vedere la distribuzione degli eventi sismici dal 24 Agosto e dalle ore 07:43 del 30 ottobre.

Il terremoto del 30 ottobre 2016 ha prodotto una scarpata di faglia della lunghezza di 15 km circa, tra gli abitati di Arquata del Tronto e Ussita. Questo spostamento cosismico rappresenta la prosecuzione verso la superficie della rottura e dello scorrimento avvenuto sulla faglia in profondità. In occasione del terremoto del 24 agosto, erano state osservate delle scarpate sul fianco del monte Vettore, ma erano ben più limitate (tratto verse in fig. 2), così come quelle segnalate più a nord che si estendono fino a Cupi e causate dal terremoto del 26 ottobre (eventi di M 5.4 e 5.9, tratto arancione in fig.2).

Figura 2
Le scarpate di faglia del 30 ottobre (tratto rosa in fig. 2) sono molto evidenti e appaiono come un gradino nella topografia di entità variabile tra 20 e 70 cm, la loro localizzazione lungo il sistema di faglie del Vettore-Porche-Bove. Dai dati di campagna si è evidenziato un ribassamento del settore occidentale rispetto a quello orientale. La geometria e l'entità della deformazione sono consistenti con il movimento avvenuto in profondità. 

Figura 3
Le mappe della deformazione (fig. 3), ricavate dai dati satellitari, evidenzia due lobi principali di deformazione. Il primo, che interessa l’area di Norcia, mostra uno spostamento verso ovest e un sollevamento che, nella linea di vista del radar, corrispondono a circa 35 cm di deformazione. Il secondo mette in luce un significativo abbassamento del suolo nell’area di Castelluccio (più di 60 cm in linea di vista del sensore) e uno spostamento verso est dell’area di Montegallo. Tali dati sono coerenti con il quadro sismotettonico ricavato dai dati sismologici e di campagna.

Generalmente i grandi terremoti rompono ripetutamente le stesse faglie e quelle dirette (come nel caso dell'Italia centrale) provocano il ribassamento e il relativo sollevamento delle due porzioni di crosta separate dalla faglia. Il ripetersi di terremoti successivi lungo le stesse faglie porta all’accumularsi delle deformazioni di ciascun terremoto che è alla base della crescita delle montagne e dell’ampliamento dei bacini (es. Mt. Vettore-Piana di Castelluccio). Il terremoto è quindi una delle forze guida principali dell’evoluzione del paesaggio appenninico.

Fonte:

mercoledì 26 ottobre 2016

Sequenza sismica Italia centrale nuovo forte evento (ottobre 2016)

Il 26 ottobre 2016 si sono registrati due forti eventi: 

  1. alle 19:10 ora italiana, M 5.4
  2. alle 21:18 ora italiana, M 6.0 (dato preliminare poi ricalcolato manualmente a M 5.9);
entrambe localizzati poco a nord dell'area interessata dalla sequenza sismica del 24 agosto scorso.
Gli eventi sismici segnati con le stelle bianche: M 6.0 e 5.4 del 24/08/2016;
stelle rosse M 5.4 e 5.9 del 26/10/2016


Dati fonte INGV;


giovedì 20 ottobre 2016

La sequenza sismica dei monti del Chianti in Toscana e alcune considerazioni sulla struttura sismogenetica e il modello sismotettonico

Riassunto
La sequenza sismica che si è sviluppata successivamente all’evento di M 4,0, del 19 dicembre 2014 nell’area dei monti del Chianti, ha permesso di avanzare delle ipotesi sulla geometria della sorgente sismogenetica e il modello sismotettonico dell’area. I piccoli terremoti sono legati agli stessi processi sismogenetici dei forti terremoti e, generalmente, sono generati da strutture sismogenetiche minori associate a quelle principali, che defiiscono la zona di rottura principale. L’analisi dei dati sismologici in relazione al contesto tettonico dell’area, ha permesso di fare un’ipotesi sulla geometria della sorgente sismogenetica rappresentata da un primo sistema di faglie principale, evidenziato dalla distribuzione degli ipocentri, con piano SW-immergente e una inclinazione media di circa 40° a cinematica normale. Un secondo sistema di faglie, evidenziato dai meccanismi focali, e rappresentato da una fascia di deformazione trascorrente destrorsa a direzione antiappenninica, assimilabile alla Linea Piombino-Cesenatico, è interpretabile come tear-fault. L’associazione di queste due strutture tettoniche alla scala regionale forma sistemi transtensivi destrorsi.

Abstract
The seismic sequence of the Chianti hills in Tuscany. Some remarks on the seismogenic structure and seismotectonic model. The seismic sequence following the M 4.0 earthquake of 19th December 2014 in the area of the Chianti hills (Tuscany) has allowed new light to be shed on the geometry of seismogenic sources and the seismotectonic model of the area. Small earthquakes are related to the same seismogenic processes of strong earthquakes and, generally, earthquakes are generated by minor seismogenic structures associated with the main ones, which defie the main rupture zone. The analysis of seismological data, in relation to the tectonic setting of the study area, made it possible to make an assumption about the geometry of seismogenic sources represented by a primary main fault system, identifid by the distribution of hypocentres, with SW-dipping plane and an average inclination of about 40° with normal kinematics. A secondary fault system, identifid by focal mechanisms, consists of a right strike-slip and anti-Apennine direction deformation zone, comparable with the Piombino-Cesenatico line and interpreted as a tear-fault. The combination of these two tectonic structures forms right transtensive systems at a regional scale.

di Paolo Balocchi, Francesca Carla Lupoli, Giulio Riga

Pubblicato in: Atti Soc. Nat. Mat. Modena 147 (2016), pp. 39-52

mercoledì 19 ottobre 2016

Seismic Sequences’ Branching Structures: Long-Range Interactions and Hazard Levels

Branching structures can provide early information on earthquakes’ preparation process, trigger stage, different breaking patterns that can occur before strong earthquakes and hazard levels reached in the area to be analyzed. In this study, we aim to understand the earthquakes long-range interactions which constitute the nodes of higher order seismic rods in the upper branching structure, and the hazard level reached in each developmental stage as well as to provide a warning time frame for the most energetic seismic events and a sound method to obtain information on the epicentral area. To this end, we have analyzed several branching structures by using both local and global seismicity. The analysis of different branching structures both on global and local scale highlights long-range interactions between the most energetic earthquakes and their triggering by smaller shocks, thus suggesting that the triggering can occur few minutes to decades before the earthquake, depending on a seismic sequence’s development speed and its structure.

di: Riga G., & Balocchi P.

Paper:
Riga, G. and Balocchi, P. (2016) Seismic Sequences’ Branching Structures: Long-Range Interactions and Hazard Levels. Open Journal of Earthquake Research, 5, 189-205. doi: 10.4236/ojer.2016.54016.